
INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-IV (June-July) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

1 IJDCST

Query Processing for Personal Management

Systems Based On Multidimensional Search

Sri Redya Jadav M.Tech (Ph.D)1, C.H.Veena (PH.D)2, Prabhakara Rao Thota3

#1 Professor, Bomma Institute of Technology and Science, Allipuram,Khammam (Dt),Andhra Pradesh.

#2 Asst.Professor, Bomma Institute of Technology and Science, Allipuram,Khammam (Dt),Andhra Pradesh.

#3 Student, Bomma Institute of Technology and Science, Allipuram,Khammam (Dt),Andhra Pradesh.

Abstract: Recently, parallel search engines have been implemented based on scalable distributed file systems such

as Google File System. Existing tools typically support some IR-style ranking on the textual part of the query, but

only consider structure (e.g., file directory) and metadata (e.g., date, file type) as filtering conditions. We propose a

novel multi-dimensional search approach that allows users to perform fuzzy searches for structure and metadata

conditions in addition to keyword conditions. Our techniques individually score each dimension and integrate the

three dimension scores into a meaningful unified score. We also design indexes and algorithms to efficiently identify

the most relevant files that match multi-dimensional queries. We perform a thorough experimental evaluation of our

approach and show that our relaxation and scoring framework for fuzzy query conditions in noncontent dimensions

can significantly improve ranking accuracy.

Index Terms: Multi-dimensional Search, Query Processing, Information seeking, search, orienteering,

teleporting, context.

I. INTRODUCTION

Researchers have tried to support directed search by

attempting to build a “perfect” search engine—i.e.,

one that returns exactly what is sought given a fully

specified information need. Attempts to build such a

search engine have focused on improving on

keyword search by permitting users to better specify

their information need through meta-data , natural

language , and even context. Numerous search tools

have been developed to perform keyword searches

and locate personal information stored in file

systems, such as the commercial tools Google

Desktop Search and Spotlight. However, these tools

usually support some form of ranking for the textual

part of the query—similar to what has been done in

the Information Retrieval (IR) community—but only

consider structure (e.g., file directory) and metadata

(e.g., date, file type) as filtering conditions. Although

earlier studies of directed search focused on keyword

search, most of the search behavior we observed did

not involve keyword search. Instead of jumping

INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-IV (June-July) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

2 IJDCST

directly to their information target using keywords,

our participants navigated to their target with small,

local steps using their contextual knowledge as a

guide, even when they knew exactly what they were

looking for in advance. This stepping behavior was

especially common for participants with unstructured

information organization. Searching for electronic

information can be a complex, multistage process,

where the information need evolves throughout the

course of the search. However, often the search

target is known in advance (e.g., a phone number or

address). Such small, directed searches have been

assumed to be simpler than large, evolving

information seeking activities.

Recently, the research community has turned its

focus on search over to Personal Information and

Data spaces which consist of heterogeneous data

collections. However, as is the case with commercial

file system search tools, these works focus on IR-

style keyword queries and use other system

information only to guide the keyword-based search.

We argue that allowing flexible conditions on

structure and metadata can significantly increase the

quality and usefulness of search results in many

search scenarios.

We found that our participants used keyword search

in only 39% of their searches, despite almost always

knowing their information need up front. Instead of

trying to jump directly to their information target

using keyword search as might be expected, our

participants performed directed situated navigation,

similar to the Micronesian islanders’ situated

navigation described by Such man. To understand

how to build the best possible search tool, we

conducted an observational study of people

performing personally motivated searches within

their own information spaces.

In this case, by using the date, size, and

structure conditions not as filtering conditions but as

part of the ranking conditions of the query, we ensure

that the best answers are returned as part of the

search result. we propose a novel approach that

allows users to efficiently perform fuzzy searches

across three different dimensions: content, metadata,

and structure. We describe individual IDF-based

scoring approaches for each dimension and present a

unified scoring framework for multi-dimensional

queries over personal information file systems. We

also present new data structures and index

construction optimizations to make finding and

scoring fuzzy matches efficient. While our work

could be extended to a variety of data space

applications and queries, we focus on a file search

scenario in this paper. That is, we consider the

granularity of the search results to be a single file in

the personal information system. Of course, our

techniques could be extended to a more flexible

query model where pieces of data within files (such

as individual. Finally, the user might misremember

the directory path under which the file was stored.

INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-IV (June-July) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

3 IJDCST

II. RELATED WORK

For example, Marchionini detailed the importance

of browsing in information seeking and O’Day and

Jeffries characterized the information seeking

process by outlining common “triggers” and “stop

conditions” that guide people’s search behaviors as

their information needs change.

Information seeking—where a person’s information

need evolves throughout the search process—has

been well studied. However, such studies introduce

artificialities that can bias behavior. For example, the

search tasks are imposed by the researcher rather than

motivated by the user, and task has been shown to

affect search performance. To gain a more realistic

idea of what search is like in the real world, other

studies have examined Web logs. Our study is unique

in that we focus on directed search and look at

behavior across a broad class of electronic types,

including email, files, and the Web. By focusing on

the communalities of interaction across types, we

gain a broader understanding of general search

techniques. Query log analysis provides insight into

the types of information people search for (e.g., sex)

and a cursory understanding of how people search

(e.g., they use very short queries), but does not

provide insight into their underlying intentions.

2.1 Tree Pattern Queries

Every query in the figure is also shown in

the form of a tree pattern together with a Boolean

formula imposing constraints on nodes in the tree.

Figure 1: Example Queries

Tree pattern queries constitute an important

and expressive subset of XPath and make our

illustration easier. Single edges denote parent child

containment, while double edges denote ancestor-

descendant containment.

These works are aimed at providing users with

generic and flexible data models to accessing and

storing information beyond what is supported in

traditional files system. These differ from ours in that

they attempt to leverage additional semantic

information to locate relevant files while our focus is

in determining the most relevant piece of information

based solely on a user-provided query. Another

study investigates user behavior when searching

emails, files, and the web. Even if users know exactly

what they are looking for, they often navigate to their

target in small steps, using contextual information

such as metadata information, instead of keyword-

based search. Query log analysis provides insight into

the types of information people search for (e.g., sex)

and a cursory understanding of how people search

(e.g., they use very short queries), but does not

provide insight into their underlying intentions.

INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-IV (June-July) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

4 IJDCST

III. EXISTING APPROACH

Consider a user saving personal information in the

file system of a personal computing device. In

addition to the actual file content, structural location

information (e.g., directory structure) and a

potentially large amount of metadata information

(e.g., access time, file type) are also stored by the file

system.

In such a scenario, the user might want to ask the

query:

[filetype = *.doc AND

createdDate = 03/21/2007 AND

content = “proposal draft” AND

structure = /docs/Wayfinder/proposals]

Let us description for above example the

user might not remember the exact creation date of

the file of interest but remembers that it was created

around 03/21/2007. Similarly, the user might be

primarily interested in files of type *.doc but might

also want to consider relevant files of different but

related types (e.g., *.tex or *.txt).

The challenge is then to score answers by

taking into account flexibility in the textual

component together with flexibility in the structural

and metadata components of the query. Once a good

scoring mechanism is chosen, efficient algorithms to

identify the best query results, without considering

all the data in the system, are also needed.

IV. OUR PROPOSED APPROACH

We propose IDF-based scoring mechanisms for

content, metadata, and structure, and a framework to

combine individual dimension scores into a unified

multi-dimensional score. We adapt existing top-k

query processing algorithms and propose

optimizations to improve access to the structure

dimension index. Our optimizations take into account

the top-k evaluation strategy to focus on building

only the parts of the index that is most relevant to the

query processing. We evaluate our scoring

framework experimentally and show that our

approach has the potential to significantly improve

search accuracy over current filtering approached.

We empirically demonstrate the effect of our

optimizations on query processing time and show that

our optimizations drastically improve query

efficiency and result in good scalability.

4.1 QUERY PROCESSING

. It takes as input several sorted lists, each containing

the system’s objects (files in our scenario) sorted in

descending order according to their relevance scores

for a particular attribute (dimension in our scenario),

and dynamically accesses the sorted lists until the

threshold condition is met to find the k best answers.

Random accesses occur when TA chooses a file from

a particular list corresponding to some dimension,

then needs the scores for the file in all the other

dimensions to compute its unified score.

INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-IV (June-July) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

5 IJDCST

4.2 Evaluating Content Scores

Random accesses are supported via standard

inverted list implementations, where, for each query

term, we can easily look up the term frequency in the

entire file system as well as in a particular file. We

support sorted accesses by keeping the inverted lists

in sorted order; that is, for the set of files that contain

a particular term, we keep the files in sorted order

according to their TF scores, normalized by file size,

for that term.

4.3 Evaluating Metadata Scores

Each parent contains a larger range of values than

its children, which ensures that the matches are

returned in decreasing order of metadata scores.

Similar to the content dimension, we use the TA

algorithm recursively to return files in sorted order

for queries that contain multiple metadata conditions.

Several techniques for XML query processing have

focused on path matching. Most notably, the Path

Stack algorithm iterates through possible matches

using stacks, each corresponding to a query path

component in a fixed order. To match a query path

that allows permutations (because of node inversion)

for some of its components, we need to consider all

possible permutations of these components (and their

corresponding stacks) and a directory match for a

node group may start and end with any one of the

node group components.

4.4 Improving Sorted Accesses

Evaluating queries with structure conditions using the

lazy DAG building algorithm can lead to significant

query evaluation times as it is common for multi-

dimensional topk processing to access very relaxed

structure matches

Algorithm 1 DAGJump(srcNode)

1. s⇐ getScore(srcNode)

2. currentNode ⇐ srcNode

3. loop

4. targetDepth⇐ getDepth(currentNode)

5. childNode⇐ firstChild(currentNode)

6. if getScore(childNode) _= s or

hasNoChildNodes(childNode) then

7. exit loop

8. currentNode ⇐ childNode

9. for each n s.t. getDepth(n) = targetDepth and

getScore(n) = s do

10. Evaluate bottom-up from n and identify ancestor

node set

S s.t. getScore(m) = s, ∀m ∈ S

11. for each m ∈ S do

12. for each n_ on path p ∈ getPaths(n,m) do

13. setScore(n_, s)

14. setSkippable(n_)

15. if notSkippable(m) then

16. setSkippable(m)

We propose Algorithm 1, DAGJump It includes two

steps: (a) starting at a node corresponding to a query

path P, the algorithm performs a depth-first traversal

and scoring of the DAG until it finds a parentchild

pair, P “ and child(P”), where scoreidf (child(P”)) <

scoreidf (P); and (b) score each node P” at the same

INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-IV (June-July) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

6 IJDCST

depth (distance from the root) as P” ; if scoreidf (P”)

= scoreidf (P).

Figure 2: An example execution of

DAGJump.
The two steps from Algorithm 1 are performed as

follows: (a) starting at the root with a score of 1,

DAGJump performs a depth-first traversal and scores

the DAG nodes until it finds a node with a smaller

score than 1 (//d//w//p); and (b) DAGJump traverses

each node at the same depth as //d//w/p (the parent

node of //d//w//p); for the four such nodes that have a

score 1, DAGJump marks as skippable all nodes that

are on their path to the root node.

Top-k query processing requires random

accesses to the DAG. Using sorted access to emulate

random access tends to be very inefficient as it is

likely the top-k algorithm will access a file that is in a

directory that only matches a very relaxed version of

the structure condition, resulting in most of the DAG

being materialized and scored.

V. PERFORMANCE EVALUATION

All experiments were performed using a

prototype system implemented in Java. We use the

MySql DB to persistently store all indexes and

Lucene to rank content. Experiments were run on a

PC with a 64-bit hyper-threaded 2.8 GHz Intel Xeon

processor, 2 GB of memory, and a 10K RPM 70 GB

SCSI disk, running the Linux 2.6.16 kernel and Sun’s

Java 1.7 JVM.

5.1 Impact of Flexible Multi-

Dimensional Search

We begin by exploring the potential of our

approach to improve scoring (and so ranking)

accuracy using two example search scenarios. In each

scenario, we initially construct a content-only query

intended to retrieve a specific target file and then

expand this query along several other dimensions. In

the first example, the target file is the novel “The

Time Machine” by H. G. Wells, located in the

directory path /Personal/Ebooks/Novels/, and the set

of query content terms in our initial content-only

query Q1 contains the two terms time and machine.

While the query is quite reasonable, the terms are

generic enough that they appear in many files,

leading to a ranking of 18 for the target file. Query

Q2 augments Q1 with the exact matching values for

file type, modification date, and containing directory.

This brings the rank of the target file to 1. The

remaining queries explore what happens when we

provide an incorrect value for the non-content

dimensions. potential impact of the node inversion

relaxation. Specifically, queries Q23 and Q26 in the

INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-IV (June-July) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

7 IJDCST

second example misorder the structure conditions as

/Java/Mail and /Java/Code, respectively, compared

to the real pathname /Personal/Mail/Code/Java.

Node inversion allow these conditions to be relaxed

to //(Java//Mail) and //(Java//Code), so that the target

file is still ranked 1.

5.2 Comparing with Existing Search

Tools

We compare the accuracy of our multi-

dimensional approach with TopX [28], a related

approach designed for XML search, Google Desktop

Search (GDS), and Lucene.

Query sets: We consider a set of 40 synthetically

generated search scenarios similar to those

considered in the last section. Specifically, 20 emails

and 20 XML documents (e.g., ebooks) were

randomly chosen to be search targets. Choosing

XML documents (emails are stored in XML format)

allows internal structure to be included in TopX

queries.

For our multi-dimensional approach, each query

targeting a file f contains content, metadata, and

structure conditions as follows:

• Content: 2 to 4 terms chosen randomly from f’s

content.

• Metadata: A date (last modified) randomly chosen

from a small range (±7 days to represent cases where

users are searching for files they recently worked on)

or a large range (±3 months to represent cases where

users are searching for files that they have not

worked on for a while and so only vaguely remember

the last modified times) around f’s actual last

modified date.

• Structure: a partial path p is formed by the correct

ordering of 2 to 4 terms randomly chosen from f’s

parent directory pathname.

5.3 Base Case Query Processing

Performance

We now turn to evaluating the search performance of

our system. We first report query processing times

for the base case where the system constructs and

evaluates a structural DAG sequentially without

incorporating the DAGJump and Random DAG

optimization algorithms.

Figure 3: The CDFs of query processing

time

Query set: We expand the query set used in the last

section for this study. Specifically, we add targets

and queries for 40 additional search scenarios, 20

INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-IV (June-July) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

8 IJDCST

targeting additional (mostly non-XML) documents

and 20 targeting media files (music, etc.).

Choosing: k. Query performance is a function of k,

the number of top ranked results that should be

returned to the user. We consider two factors in

choosing a k value: (1) the mean recall (as defined

above) and MRR, and (2) the likelihood that users

would actually look through all k returned answers

for the target file.

5.4 Query Processing Performance

with Optimizations

We observe that these optimizations significantly

reduce the query processing times for most of these

queries. In particular, the query processing time of

the slowest query, Q10, decreased from 125.57 to

1.96 seconds.

Figure 4: The mean and median query

times for queries targeting email and

documents plotted as a function of data

set size.

To summarize, our DAGJump algorithm improves

query performance when (a) there are many

skippable nodes which otherwise would have to be

scored during the top-k sorted accesses, and (b) the

total processing time spent on these nodes is

significant. The RandomDAG algorithm improves

query performance when (a) the topk evaluation

requests many random access, and (b) the total

processing time that would have been spent on nodes

successfully skipped by RandomDAG is significant.

VI. CONCLUSION

We defined structure and metadata relaxations and

proposed IDF-based scoring approaches for content,

metadata, and structure query conditions. This

uniformity of scoring allows individual dimension

scores to be easily aggregated. We have also

designed indexing structures and dynamic index

construction and query processing optimizations to

support efficient evaluation of multi-dimensional

queries. Our evaluation show that our multi-

dimensional score aggregation technique preserves

the properties of individual dimension scores and has

the potential to significantly improve ranking

accuracy. We also show that our indexes and

optimizations are necessary to make multi-

dimensional searches efficient enough for practical

everyday usage.

VII.REFERENCES

[1] D. Carmel, Y. S. Maarek, M. Mandelbrod, Y.

Mass, and A. Soffer. Searching XML Documents via

XML Fragments. In Proc. of the ACM Intl.

INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-IV (June-July) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

9 IJDCST

Conference on Research and Development in

Information Retrieval (SIGIR), 2003.

[2] S. Chaudhuri, R. Ramakrishnan, and G. Weikum.

Integrating DB and IR technologies: What is the

sound of one hand clapping? In Proc. Of the

Conference on Innovative Data Systems Research

(CIDR), 2005.

[3] J. Chen, H. Guo, W. Wu, and C. Xie. Search Your

Memory! – An Associative Memory Based Desktop

Search System. In Proc. of the ACM Intl. Conference

on Management of Data (SIGMOD), 2009.

[4] J.-P. Dittrich and M. A. Vaz Salles. iDM: A

Unified and Versatile Data Model for Personal Data

space Management. In Proc. of the Intl. Conference

on Very Large Databases (VLDB), 2006.

[5] R. Fagin, A. Lotem, and M. Naor. Optimal

Aggregation Algorithms for Middleware. Journal of

Computer and System Sciences, 2003.

[6] M. Franklin, A. Halevy, and D. Maier. From

Databases to Data spaces: a New Abstraction for

Information Management. SIGMOD Record, 34(4),

2005.

About Authors:
Sri Redya Jadav M.Tech, (Ph.D) Head of

the Department Department of CSE & IT

. BE from Osmania University , M.Tech

from JNTU University and pursuing PhD

from JNTU university. Having 12 years of

experience in teaching Computer Technologies published

various research articles in National and International

Journals.

CH.Veena,B.Tech,M.tech,(PH.D)

Assistant Professor,CSE

Research scholar in Data Mining.

The author named Prabhakara rao

thota pursuing his M.Tech from

Bomma College, Khammam affiliated

to JNTUH. His research interests are

Network security, data warehousing,

and operating systems.

